Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits.
نویسندگان
چکیده
Physiological properties of central nervous system neurons infected with a pseudorabies virus were examined in vitro by using whole-cell patch-clamp techniques. A strain of pseudorabies virus (PRV 152) isogenic with the Bartha strain of PRV was constructed to express an enhanced green fluorescent protein (EGFP) from the human cytomegalovirus immediate early promoter. Unilateral PRV 152 injections into the vitreous body of the hamster eye transsynaptically infected a restricted set of retinorecipient neurons including neurons in the hypothalamic suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) of the thalamus. Retinorecipient SCN neurons were identified in tissue slices prepared for in vitro electrophysiological analysis by their expression of EGFP. At longer postinjection times, retinal ganglion cells in the contralateral eye also expressed EGFP, becoming infected after transsynaptic uptake and retrograde transport from infected retinorecipient neurons. Retinal ganglion cells that expressed EGFP were easily identified in retinal whole mounts viewed under epifluorescence. Whole-cell patch-clamp recordings revealed that the physiological properties of PRV 152-infected SCN neurons were within the range of properties observed in noninfected SCN neurons. Physiological properties of retinal ganglion cells also appeared normal. The results suggest that PRV 152 is a powerful tool for the transsynaptic labeling of neurons in defined central nervous system circuits that allows neurons to be identified in vitro by their expression of EGFP, analyzed electrophysiologically, and described in morphological detail.
منابع مشابه
Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.
A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker ...
متن کاملModified herpes simplex virus delivery of enhanced GFP into the central nervous system.
Controlled expression of proteins is a key experimental approach to a deeper understanding of the molecular basis of neuronal function. Here we evaluate the HSV-1 (herpes simplex virus) amplicon vector for gene delivery into the brains of living rats. We demonstrate that HSV-1 amplicon vectors expressing enhanced green fluorescent protein (EGFP) can reliably infect neurons after it is injected ...
متن کاملTranssynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling.
Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. Th...
متن کاملLocal Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing
Intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) control important physiological processes, including the circadian rhythm, the pupillary reflex, and the suppression of locomotor behavior (reviewed in [1]). ipRGCs are also activated by classical photoreceptors, the rods and cones, through local retinal circuits [2, 3]. ipRGCs can be transsynaptically labeled th...
متن کاملBrainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants.
Previous physiological investigations have suggested the existence of a neural circuit that coordinates activation of motor and autonomic efferents before or at the onset of exercise. Traditionally these circuits have been postulated to involve forebrain areas. However, overlapping populations of medullary reticular formation neurons that participate in motor or autonomic control have been desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 16 شماره
صفحات -
تاریخ انتشار 2000